KLA Digital Logo
KLA Digital
Industry Guide
Updated: January 2026

EU AI Act Compliance for Insurance

A comprehensive guide for Chief Risk Officers, Actuarial Leads, and Claims Directors at insurers navigating the intersection of EU AI Act and Solvency II requirements.

Summary

Key Takeaways

Essential points for EU AI Act compliance in this industry

Underwriting and pricing AI is likely high-risk

Systems affecting access to insurance fall under Annex III category 5(a)

Claims automation varies by implementation

Fully automated claims decisions may be high-risk; triage for human review likely is not

Solvency II provides a foundation

Existing model governance can be extended, but gaps exist

Human oversight is actuarial oversight, formalized

Article 14 requirements align with existing practices but require documentation

Evidence of decisions matters

Auditors will ask what actually happened in specific claims and underwriting decisions

Timeline

Recommended Action Timeline

Prioritized steps to achieve EU AI Act compliance by August 2026

Q1 2026

  • Complete AI use case inventory
  • Classify by risk level
  • Map to existing model governance

Q2 2026

  • Implement human oversight workflows
  • Extend Solvency II documentation for Annex IV
  • Select tooling

Q3 2026

  • Complete technical documentation
  • Implement evidence collection
  • Conduct audit readiness review

August 2026

  • High-risk system compliance deadline

Insurance AI classification analysis

The EU AI Act's risk classification has specific implications for insurance AI use cases. Understanding which systems are high-risk determines your compliance obligations.

AI Use CaseLikely ClassificationKey Factors
Underwriting decisionsHigh-riskAffects access to insurance
Premium pricing (individual)High-riskCan make coverage inaccessible
Claims denial (automated)High-riskSignificant individual impact
Claims triage/routingNot high-riskSupports human decision
Fraud detection (internal)Not high-riskFlags for human review
Customer service chatbotLimited riskTransparency only
Document processingMinimal riskNo decision authority

Underwriting and pricing: Likely high-risk

AI systems used in underwriting and pricing decisions that affect individuals' access to insurance coverage fall under Annex III category 5(a) (essential services). This includes:

  • Automated underwriting: Systems that approve, decline, or refer applications
  • Risk scoring models: AI determining individual risk levels for pricing
  • Premium calculation: Automated pricing based on individual characteristics
  • Coverage eligibility: Systems determining what coverage individuals can access
  • Renewal decisions: AI affecting whether policies are renewed

Claims processing: Depends on automation level

Claims AI classification depends on how much decision authority the system has.

Likely high-risk: Automated claims denial without human review, systems determining fraud with automated consequences, AI setting final settlement amounts without human approval.

Likely NOT high-risk: Claims triage routing to appropriate adjusters, fraud flagging for human investigation, document processing and extraction, settlement estimation for adjuster guidance.

Fraud detection: Typically internal tool

Fraud detection systems are likely NOT high-risk when used internally to flag suspicious claims for investigation, when humans review all flagged cases before action, and when there are no automated consequences for customers.

They are potentially high-risk when automated actions are taken against customers, when used for underwriting decisions, or when combined with automated claims processing.

Solvency II and EU AI Act integration

Insurance organizations have existing model governance frameworks under Solvency II. The EU AI Act builds on this foundation but introduces additional requirements.

Existing Solvency II model governance

Solvency II already requires model validation and documentation, governance frameworks for model risk, regular review and update procedures, and board-level oversight of material models.

Where EU AI Act adds obligations

Beyond Solvency II, the EU AI Act requires Annex IV specific format documentation, fundamental rights impact consideration, human oversight at decision time, evidence capture with integrity verification, and specific focus on individual impacts.

  • Human oversight mechanisms: Solvency II focuses on model-level governance; EU AI Act requires decision-level oversight
  • Evidence of actual decisions: Beyond model validation, you need records of what the AI decided and who approved it
  • Fundamental rights: Solvency II does not address discrimination and fairness in the same way
  • Transparency to individuals: Information requirements for affected individuals are new

Unified compliance approach

Build a compliance framework that satisfies both: extend existing model documentation to include Annex IV requirements, add fundamental rights sections to risk assessments, include human oversight procedures, implement decision-time approval workflows, and capture evidence at both model and decision levels.

Human oversight for underwriting and claims

Article 14 human oversight requirements have specific implications for insurance workflows. The good news: insurance already has human oversight traditions. The challenge: formalizing and documenting them.

Actuarial sign-off requirements

Actuarial oversight is already standard practice. EU AI Act formalizes it by requiring documented oversight mechanisms, ensuring humans can understand AI outputs, enabling intervention and override at decision time, and capturing evidence of oversight actions.

Claims adjuster workflows

Claims operations already involve human review. Structure this for compliance with risk-based routing:

Claim TypeAI RoleHuman Role
Simple, low-valueRecommendationSampling review
Complex or borderlineTriage and draftFull adjuster review
High-value or disputedSupporting analysisSenior adjuster decision
Potential fraudFlag and routeInvestigation team decision

Appeal and override procedures

Override documentation must include the AI recommendation being overridden, the human decision and rationale, who made the decision and their authority, supporting evidence for the override, and timestamp with audit trail.

Bias monitoring for protected characteristics

Insurance faces particular scrutiny for discrimination. EU AI Act requirements intersect with existing anti-discrimination obligations.

Insurance-specific fairness considerations

Insurance pricing legitimately uses risk factors, but some factors correlate with protected characteristics (gender, age, race/ethnicity, disability, religion). Legitimate risk factors that may proxy for protected characteristics include geographic location, occupation, health history, and claims history.

Proxy discrimination analysis

AI systems can discriminate through proxies even without using protected characteristics directly. Required analysis includes identifying relevant protected characteristics, analyzing correlations between model inputs and protected characteristics, testing model outputs for disparate impact, documenting methodology and findings, and implementing remediation for detected issues.

Remediation procedures

When bias is detected: immediate response (document finding, assess severity, determine if system should be paused), investigation (identify root cause, quantify affected population), and remediation (implement fixes, validate effectiveness, document changes, monitor for recurrence).

Evidence collection and audit readiness

Insurance regulators will increasingly ask about AI governance. Evidence collection must support both Solvency II and EU AI Act audits.

What insurance regulators will ask

Expect questions on governance (How do you classify AI systems? Who is accountable at board level?), specific decisions (Can you show the AI's role in this underwriting decision? Who reviewed this claims decision?), fairness (How do you monitor for discrimination? What disparities have you identified?), and incidents (What AI-related incidents have occurred?).

Evidence retention and integrity

Insurance-specific considerations include aligning retention periods with policy retention requirements (often 7+ years after policy end), considering claims tail for long-tail lines, and regulatory examination lookback periods. Evidence integrity requires tamper-evident storage, cryptographic verification, chain of custody documentation, and independent verification capabilities.

Checklist

Implementation Checklist

Track your progress toward EU AI Act compliance with these prioritized action items

90-day priorities (Q1 2026)

  • List all AI systems in underwriting, claims, and operations
  • Classify each by EU AI Act risk level
  • Map to existing Solvency II model governance
  • Document classification rationale
  • Assign executive accountability for EU AI Act
  • Extend model governance committee scope
  • Define roles for human oversight
  • Compare existing documentation to Annex IV
  • Assess evidence collection capabilities

180-day priorities (Q2 2026)

  • Extend model documentation for Annex IV
  • Document human oversight procedures
  • Create fundamental rights impact assessments
  • Update risk management documentation
  • Implement approval workflows for high-risk decisions
  • Deploy evidence capture at decision points
  • Configure bias monitoring
  • Establish integrity verification for evidence
  • Review AI vendor contracts for EU AI Act provisions

365-day priorities (Q3-Q4 2026)

  • Conduct internal conformity assessment
  • Address identified findings
  • Complete Declaration of Conformity
  • Generate sample evidence packages
  • Conduct audit simulation
  • Test evidence integrity verification
  • Establish post-market monitoring
  • Define incident reporting procedures
  • Create compliance dashboards
Get Started

Ready to implement EU AI Act compliance?

KLA Digital provides the runtime governance layer insurance organizations need for EU AI Act compliance: policy checkpoints, approval queues, and audit-ready evidence exports.

Last updated: January 2026. This guide provides general information about EU AI Act compliance for insurance. Organizations should consult legal counsel for advice specific to their circumstances.